EconPapers    
Economics at your fingertips  
 

Smoothing and Benchmarking for Small Area Estimation

Rebecca C. Steorts, Timo Schmid and Nikos Tzavidis

International Statistical Review, 2020, vol. 88, issue 3, 580-598

Abstract: Small area estimation is concerned with methodology for estimating population parameters associated with a geographic area defined by a cross‐classification that may also include non‐geographic dimensions. In this paper, we develop constrained estimation methods for small area problems: those requiring smoothness with respect to similarity across areas, such as geographic proximity or clustering by covariates, and benchmarking constraints, requiring weighted means of estimates to agree across levels of aggregation. We develop methods for constrained estimation decision theoretically and discuss their geometric interpretation. The constrained estimators are the solutions to tractable optimisation problems and have closed‐form solutions. Mean squared errors of the constrained estimators are calculated via bootstrapping. Our approach assumes the Bayes estimator exists and is applicable to any proposed model. In addition, we give special cases of our techniques under certain distributional assumptions. We illustrate the proposed methodology using web‐scraped data on Berlin rents aggregated over areas to ensure privacy.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/insr.12373

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:88:y:2020:i:3:p:580-598

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:580-598