An Extensive Comparison of Some Well‐Established Value at Risk Methods
Wilson Calmon,
Eduardo Ferioli,
Davi Lettieri,
Johann Soares and
Adrian Pizzinga
International Statistical Review, 2021, vol. 89, issue 1, 148-166
Abstract:
In the last two decades, several methods for estimating Value at Risk have been proposed in the literature. Four of the most successful approaches are conditional autoregressive Value at Risk, extreme value theory, filtered historical simulation and time‐varying higher order conditional moments. In this paper, we compare their performances under both an empirical investigation using 80 assets and a large Monte Carlo simulation. From our analysis, we conclude that most of the methods seem not to imply huge numerical difficulties and, according to usual backtests and performance measurements, extreme value theory presents the best results most of the times, followed by filtered historical simulation.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12393
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:1:p:148-166
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().