Hierarchical Models for the Analysis of Likert Scales in Regression and Item Response Analysis
Gerhard Tutz
International Statistical Review, 2021, vol. 89, issue 1, 18-35
Abstract:
Appropriate modelling of Likert‐type items should account for the scale level and the specific role of the neutral middle category, which is present in most Likert‐type items that are in common use. Powerful hierarchical models that account for both aspects are proposed. To avoid biased estimates, the models separate the neutral category when modelling the effects of explanatory variables on the outcome. The main model that is propagated uses binary response models as building blocks in a hierarchical way. It has the advantage that it can be easily extended to include response style effects and non‐linear smooth effects of explanatory variables. By simple transformation of the data, available software for binary response variables can be used to fit the model. The proposed hierarchical model can be used to investigate the effects of covariates on single Likert‐type items and also for the analysis of a combination of items. For both cases, estimation tools are provided. The usefulness of the approach is illustrated by applying the methodology to a large data set.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/insr.12396
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:1:p:18-35
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().