EconPapers    
Economics at your fingertips  
 

Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models

Francis K. C. Hui, Samuel Müller and Alan H. Welsh

International Statistical Review, 2021, vol. 89, issue 1, 186-206

Abstract: There has been considerable and controversial research over the past two decades into how successfully random effects misspecification in mixed models (i.e. assuming normality for the random effects when the true distribution is non‐normal) can be diagnosed and what its impacts are on estimation and inference. However, much of this research has focused on fixed effects inference in generalised linear mixed models. In this article, motivated by the increasing number of applications of mixed models where interest is on the variance components, we study the effects of random effects misspecification on random effects inference in linear mixed models, for which there is considerably less literature. Our findings are surprising and contrary to general belief: for point estimation, maximum likelihood estimation of the variance components under misspecification is consistent, although in finite samples, both the bias and mean squared error can be substantial. For inference, we show through theory and simulation that under misspecification, standard likelihood ratio tests of truly non‐zero variance components can suffer from severely inflated type I errors, and confidence intervals for the variance components can exhibit considerable under coverage. Furthermore, neither of these problems vanish asymptotically with increasing the number of clusters or cluster size. These results have major implications for random effects inference, especially if the true random effects distribution is heavier tailed than the normal. Fortunately, simple graphical and goodness‐of‐fit measures of the random effects predictions appear to have reasonable power at detecting misspecification. We apply linear mixed models to a survey of more than 4 000 high school students within 100 schools and analyse how mathematics achievement scores vary with student attributes and across different schools. The application demonstrates the sensitivity of mixed model inference to the true but unknown random effects distribution.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/insr.12378

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:1:p:186-206

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:89:y:2021:i:1:p:186-206