On Two Existing Approaches to Statistical Analysis of Social Media Data
Martina Patone and
Li‐Chun Zhang
International Statistical Review, 2021, vol. 89, issue 1, 54-71
Abstract:
Using social media data for statistical analysis of general population faces commonly two basic obstacles: firstly, social media data are collected for different objects than the population units of interest; secondly, the relevant measures are typically not available directly but need to be extracted by algorithms or machine learning techniques. In this paper, we examine and summarise two existing approaches to statistical analysis based on social media data, which can be discerned in the literature. In the first approach, analysis is applied to the social media data that are organised around the objects directly observed in the data; in the second one, a different analysis is applied to a constructed pseudo survey dataset, aimed to transform the observed social media data to a set of units from the target population. We elaborate systematically the relevant data quality frameworks, exemplify their applications and highlight some typical challenges associated with social media data.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12404
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:1:p:54-71
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().