EconPapers    
Economics at your fingertips  
 

Uncertainty Estimation for Pseudo‐Bayesian Inference Under Complex Sampling

Matthew R. Williams and Terrance D. Savitsky

International Statistical Review, 2021, vol. 89, issue 1, 72-107

Abstract: Social and economic studies are often implemented as complex survey designs. For example, multistage, unequal probability sampling designs utilised by federal statistical agencies are typically constructed to maximise the efficiency of the target domain level estimator (e.g. indexed by geographic area) within cost constraints for survey administration. Such designs may induce dependence between the sampled units; for example, with employment of a sampling step that selects geographically indexed clusters of units. A sampling‐weighted pseudo‐posterior distribution may be used to estimate the population model on the observed sample. The dependence induced between coclustered units inflates the scale of the resulting pseudo‐posterior covariance matrix that has been shown to induce under coverage of the credibility sets. By bridging results across Bayesian model misspecification and survey sampling, we demonstrate that the scale and shape of the asymptotic distributions are different between each of the pseudo‐maximum likelihood estimate (MLE), the pseudo‐posterior and the MLE under simple random sampling. Through insights from survey‐sampling variance estimation and recent advances in computational methods, we devise a correction applied as a simple and fast postprocessing step to Markov chain Monte Carlo draws of the pseudo‐posterior distribution. This adjustment projects the pseudo‐posterior covariance matrix such that the nominal coverage is approximately achieved. We make an application to the National Survey on Drug Use and Health as a motivating example and we demonstrate the efficacy of our scale and shape projection procedure on synthetic data on several common archetypes of survey designs.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/insr.12376

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:1:p:72-107

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:89:y:2021:i:1:p:72-107