EconPapers    
Economics at your fingertips  
 

Predictive Inference Based on Markov Chain Monte Carlo Output

Fabian Krüger, Sebastian Lerch, Thordis Thorarinsdottir and Tilmann Gneiting

International Statistical Review, 2021, vol. 89, issue 2, 274-301

Abstract: In Bayesian inference, predictive distributions are typically in the form of samples generated via Markov chain Monte Carlo or related algorithms. In this paper, we conduct a systematic analysis of how to make and evaluate probabilistic forecasts from such simulation output. Based on proper scoring rules, we develop a notion of consistency that allows to assess the adequacy of methods for estimating the stationary distribution underlying the simulation output. We then provide asymptotic results that account for the salient features of Bayesian posterior simulators and derive conditions under which choices from the literature satisfy our notion of consistency. Importantly, these conditions depend on the scoring rule being used, such that the choices of approximation method and scoring rule are intertwined. While the logarithmic rule requires fairly stringent conditions, the continuous ranked probability score yields consistent approximations under minimal assumptions. These results are illustrated in a simulation study and an economic data example. Overall, mixture‐of‐parameters approximations that exploit the parametric structure of Bayesian models perform particularly well. Under the continuous ranked probability score, the empirical distribution function is a simple and appealing alternative option.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://doi.org/10.1111/insr.12405

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:2:p:274-301

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:89:y:2021:i:2:p:274-301