A multivariate Poisson model based on comonotonic shocks
Juliana Schulz,
Christian Genest and
Mhamed Mesfioui
International Statistical Review, 2021, vol. 89, issue 2, 323-348
Abstract:
Multivariate count data arise naturally in practice. In analysing such data, it is critical to define a model that can accurately capture the underlying dependence structure between the counts. To this end, this paper develops a multivariate model wherein correlated Poisson margins are generated by a comonotonic shock vector. The proposed model allows for greater flexibility in the dependence structure than that of the classical construction, which relies on the convolution of vectors of common Poisson shock variables. Several probabilistic properties of the multivariate comonotonic shock Poisson model are established, and various estimation strategies are discussed in detail. The model is further studied through simulations, and its utility is highlighted using a real data application.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/insr.12408
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:2:p:323-348
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().