EconPapers    
Economics at your fingertips  
 

Spatial Regression With Partial Differential Equation Regularisation

Laura M. Sangalli

International Statistical Review, 2021, vol. 89, issue 3, 505-531

Abstract: This work gives an overview of an innovative class of methods for the analysis of spatial and of functional data observed over complicated two‐dimensional domains. This class is based on regression with regularising terms involving partial differential equations. The associated estimation problems are solved resorting to advanced numerical analysis techniques. The synergical interplay of approaches from statistics, applied mathematics and engineering endows the methods with important advantages with respect to the available techniques, and makes them able to accurately deal with data structures for which the classical techniques are unfit. Spatial regression with differential regularisation is illustrated via applications to the analysis of eco‐colour doppler measurements of blood‐flow velocity, and to functional magnetic resonance imaging signals associated with neural connectivity in the cerebral cortex.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/insr.12444

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:3:p:505-531

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:89:y:2021:i:3:p:505-531