Supervised Machine Learning Techniques: An Overview with Applications to Banking
Linwei Hu,
Jie Chen,
Joel Vaughan,
Soroush Aramideh,
Hanyu Yang,
Kelly Wang,
Agus Sudjianto and
Vijayan N. Nair
International Statistical Review, 2021, vol. 89, issue 3, 573-604
Abstract:
This article provides an overview of supervised machine learning (ML) with a focus on applications in banking. The supervised ML techniques covered include bagging (random forest), boosting (gradient boosting machine) and neural networks. We begin with an introduction to ML tasks and techniques. This is followed by a description of tree‐based ensemble algorithms, including bagging with random forest and boosting with gradient boosting machines, as well as feedforward neural networks. We then provide an extensive discussion of hyper‐parameter optimisation techniques. Interpretability of ML results is an important topic in banking and other regulated industries, and it is also covered in some depth. The paper concludes with a comparison of the features of different ML algorithms and a discussion of their use in practice. An application from credit risk modelling in banking is used throughout the paper to illustrate the techniques and interpret the results of the algorithms.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/insr.12448
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:89:y:2021:i:3:p:573-604
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().