EconPapers    
Economics at your fingertips  
 

Bayesian Models Applied to Cyber Security Anomaly Detection Problems

José A. Perusquía, Jim E. Griffin and Cristiano Villa

International Statistical Review, 2022, vol. 90, issue 1, 78-99

Abstract: Cyber security is an important concern for all individuals, organisations and governments globally. Cyber attacks have become more sophisticated, frequent and dangerous than ever, and traditional anomaly detection methods have been proved to be less effective when dealing with these new classes of cyber threats. In order to address this, both classical and Bayesian models offer a valid and innovative alternative to the traditional signature‐based methods, motivating the increasing interest in statistical research that it has been observed in recent years. In this review, we provide a description of some typical cyber security challenges, typical types of data and statistical methods, paying special attention to Bayesian approaches for these problems.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/insr.12466

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:90:y:2022:i:1:p:78-99

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:90:y:2022:i:1:p:78-99