EconPapers    
Economics at your fingertips  
 

Bias, Fairness and Accountability with Artificial Intelligence and Machine Learning Algorithms

Nengfeng Zhou, Zach Zhang, Vijayan N. Nair, Harsh Singhal and Jie Chen

International Statistical Review, 2022, vol. 90, issue 3, 468-480

Abstract: The advent of artificial intelligence (AI) and machine learning algorithms has led to opportunities as well as challenges in their use. In this overview paper, we begin with a discussion of bias and fairness issues that arise with the use of AI techniques, with a focus on supervised machine learning algorithms. We then describe the types and sources of data bias and discuss the nature of algorithmic unfairness. In addition, we provide a review of fairness metrics in the literature, discuss their limitations, and describe de‐biasing (or mitigation) techniques in the model life cycle.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/insr.12492

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:90:y:2022:i:3:p:468-480

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:90:y:2022:i:3:p:468-480