Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials
Yves Tillé
International Statistical Review, 2022, vol. 90, issue 3, 481-498
Abstract:
The organisation of a design of experiments, for example, for the realisation of a clinical trial, is crucial. It is often desirable to balance designs so that the means of the covariates are approximately the same in the test and control groups. In survey sampling theory, balanced sampling and calibration are two techniques that improve the precision of estimates. In this paper, we show the links between the two areas. We begin by assessing the gain in precision between a balanced design and a simple random sampling for the least squares estimators and the estimator by differences. We compare rerandomisation techniques and the cube method in order to balance the design. We propose a new method, particularly efficient, which combines the cube method with multivariate matching. A set of simulations is carried out in order to evaluate the different methods. The interest of the calibration is shown even if the design is almost balanced. It is thus shown that tools used by survey statisticians can be useful for experimental designs and clinical trials.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12498
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:90:y:2022:i:3:p:481-498
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().