EconPapers    
Economics at your fingertips  
 

ABC of the future

Henri Pesonen, Umberto Simola, Alvaro Köhn‐Luque, Henri Vuollekoski, Xiaoran Lai, Arnoldo Frigessi, Samuel Kaski, David T. Frazier, Worapree Maneesoonthorn, Gael M. Martin and Jukka Corander

International Statistical Review, 2023, vol. 91, issue 2, 243-268

Abstract: Approximate Bayesian computation (ABC) has advanced in two decades from a seminal idea to a practically applicable inference tool for simulator‐based statistical models, which are becoming increasingly popular in many research domains. The computational feasibility of ABC for practical applications has been recently boosted by adopting techniques from machine learning to build surrogate models for the approximate likelihood or posterior and by the introduction of a general‐purpose software platform with several advanced features, including automated parallelisation. Here we demonstrate the strengths of the advances in ABC by going beyond the typical benchmark examples and considering real applications in astronomy, infectious disease epidemiology, personalised cancer therapy and financial prediction. We anticipate that the emerging success of ABC in producing actual added value and quantitative insights in the real world will continue to inspire a plethora of further applications across different fields of science, social science and technology.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/insr.12522

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:91:y:2023:i:2:p:243-268

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734

Access Statistics for this article

International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg

More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:istatr:v:91:y:2023:i:2:p:243-268