A Bootstrap Variance Procedure for the Generalised Regression Estimator
Marius Stefan and
Michael A. Hidiroglou
International Statistical Review, 2023, vol. 91, issue 2, 294-317
Abstract:
The generalised regression estimator (GREG) uses auxiliary data that are available from the finite population to improve the efficiency of the estimator of a total (mean). Estimators of the variance of GREG that have been proposed in the sampling literature include those based on Taylor linearisation and the jackknife techniques. Approximations based on Taylor expansions are reasonable for large samples. However, when the sample size is small, the Taylor‐based variance estimator has a large negative bias. The jackknife variance estimators overestimate the variance of GREG for small sample sizes. We offset these setbacks using a bootstrap procedure for estimating the variance of the GREG. The method uses a bootstrap population constructed with the model underlying the GREG estimator. Repeated samples are selected in the bootstrap population according to the design used to select the initial sample, and the variability associated with these bootstrap samples is used to compute the proposed bootstrap variance estimator. Simulations show that the new bootstrap estimator has a small bias for samples that have few observations.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12528
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:91:y:2023:i:2:p:294-317
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().