Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions
Nina Deliu,
Joseph Jay Williams and
Bibhas Chakraborty
International Statistical Review, 2025, vol. 93, issue 3, 385-424
Abstract:
In recent years, reinforcement learning (RL) has acquired a prominent position in health‐related sequential decision‐making problems, gaining traction as a valuable tool for delivering adaptive interventions (AIs). However, in part due to a poor synergy between the methodological and the applied communities, its real‐life application is still limited and its potential is still to be realised. To address this gap, our work provides the first unified technical survey on RL methods, complemented with case studies, for constructing various types of AIs in healthcare. In particular, using the common methodological umbrella of RL, we bridge two seemingly different AI domains, dynamic treatment regimes and just‐in‐time adaptive interventions in mobile health, highlighting similarities and differences between them and discussing the implications of using RL. Open problems and considerations for future research directions are outlined. Finally, we leverage our experience in designing case studies in both areas to showcase the significant collaborative opportunities between statistical, RL and healthcare researchers in advancing AIs.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12583
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:93:y:2025:i:3:p:385-424
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().