New Scheme of Empirical Likelihood Method for Ranked Set Sampling: Applications to Two One‐Sample Problems
Soohyun Ahn,
Xinlei Wang,
Chul Moon and
Johan Lim
International Statistical Review, 2025, vol. 93, issue 3, 459-498
Abstract:
We propose a novel empirical likelihood (EL) approach for ranked set sampling (RSS) that leverages the ranking structure and information of the RSS. Our new proposal suggests constraining the sum of the within‐stratum probabilities of each rank stratum to 1/H, where H is the number of rank strata. The use of the additional constraints eliminates the need of subjective weight selection in unbalanced RSS and facilitates a seamless extension of the method for balanced RSS to unbalanced RSS. We apply our new proposal to testing one sample population mean and evaluate its performance through a numerical study and two real‐world data sets, examining obesity from body fat data and symmetry of dental size from human tooth size data. We further consider the extension of the proposed EL method to jackknife EL.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/insr.12589
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:istatr:v:93:y:2025:i:3:p:459-498
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0306-7734
Access Statistics for this article
International Statistical Review is currently edited by Eugene Seneta and Kees Zeelenberg
More articles in International Statistical Review from International Statistical Institute Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().