A linear algebra measure of cluster quality
Laura A. Mather
Journal of the American Society for Information Science, 2000, vol. 51, issue 7, 602-613
Abstract:
One of the most common models in information retrieval (IR), the vector space model, represents a document set as a term‐document matrix where each row corresponds to a term and each column corresponds to a document. Because of the use of matrices in IR, it is possible to apply linear algebra to this IR model. This paper describes an application of linear algebra to text clustering, namely, a metric for measuring cluster quality. The metric is based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. The metric compares the singular values of the term‐document matrix to the singular values of the matrices for each of the clusters to determine the amount of overlap of the terms across clusters. Because the metric can be difficult to interpret, a standardization of the metric is defined, which specifies the number of standard deviations a clustering of a document set is from an average, random clustering of that document set. Empirical evidence shows that the standardized cluster metric correlates with clustered retrieval performance when comparing clustering algorithms or multiple parameters for the same clustering algorithm.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/(SICI)1097-4571(2000)51:73.0.CO;2-1
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamest:v:51:y:2000:i:7:p:602-613
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1097-4571
Access Statistics for this article
More articles in Journal of the American Society for Information Science from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().