On cold start for associative tag recommendation
Eder F. Martins,
Fabiano M. Belém,
Jussara M. Almeida and
Marcos A. Gonçalves
Journal of the Association for Information Science & Technology, 2016, vol. 67, issue 1, 83-105
Abstract:
type="main">
Tag recommendation strategies that exploit term co-occurrence patterns with tags previously assigned to the target object have consistently produced state-of-the-art results. However, such techniques work only for objects with previously assigned tags. Here we focus on tag recommendation for objects with no tags, a variation of the well-known \textit{cold start} problem. We start by evaluating state-of-the-art co-occurrence based methods in cold start. Our results show that the effectiveness of these methods suffers in this situation. Moreover, we show that employing various automatic filtering strategies to generate an initial tag set that enables the use of co-occurrence patterns produces only marginal improvements. We then propose a new approach that exploits both positive and negative user feedback to iteratively select input tags along with a genetic programming strategy to learn the recommendation function. Our experimental results indicate that extending the methods to include user relevance feedback leads to gains in precision of up to 58% over the best baseline in cold start scenarios and gains of up to 43% over the best baseline in objects that contain some initial tags (i.e., no cold start). We also show that our best relevance-feedback-driven strategy performs well even in scenarios that lack user cooperation (i.e., users may refuse to provide feedback) and user reliability (i.e., users may provide the wrong feedback).
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1002/asi.23353 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:67:y:2016:i:1:p:83-105
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().