EconPapers    
Economics at your fingertips  
 

The role of domain knowledge in document selection from search results

Jingjing Liu and Xiangmin Zhang

Journal of the Association for Information Science & Technology, 2019, vol. 70, issue 11, 1236-1247

Abstract: It is a frequently seen scenario that when people are not familiar with their search topics, they use a simple keyword search, which leads to a large amount of search results in multiple pages. This makes it difficult for users to pick relevant documents, especially given that they are not knowledgeable of the topics. To explore how systems can better help users find relevant documents from search results, the current research analyzed document selection behaviors of users with different levels of domain knowledge (DK). Data were collected in a laboratory study with 35 participants each searching on four tasks in the genomics domain. The results show that users with high and low DK levels selected different sets of documents to view; those high in DK read more documents and gave higher relevance ratings for the viewed documents than those low in DK did. Users with low DK tended to select documents ranking toward the top of the search result lists, and those with high in DK tended to also select documents ranking down the search result lists. The findings help design search systems that can personalize search results to users with different levels of DK.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1002/asi.24199

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:70:y:2019:i:11:p:1236-1247

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635

Access Statistics for this article

More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jinfst:v:70:y:2019:i:11:p:1236-1247