EconPapers    
Economics at your fingertips  
 

Quantifying Biases in Online Information Exposure

Dimitar Nikolov, Mounia Lalmas, Alessandro Flammini and Filippo Menczer

Journal of the Association for Information Science & Technology, 2019, vol. 70, issue 3, 218-229

Abstract: Our consumption of online information is mediated by filtering, ranking, and recommendation algorithms that introduce unintentional biases as they attempt to deliver relevant and engaging content. It has been suggested that our reliance on online technologies such as search engines and social media may limit exposure to diverse points of view and make us vulnerable to manipulation by disinformation. In this article, we mine a massive data set of web traffic to quantify two kinds of bias: (i) homogeneity bias, which is the tendency to consume content from a narrow set of information sources, and (ii) popularity bias, which is the selective exposure to content from top sites. Our analysis reveals different bias levels across several widely used web platforms. Search exposes users to a diverse set of sources, while social media traffic tends to exhibit high popularity and homogeneity bias. When we focus our analysis on traffic to news sites, we find higher levels of popularity bias, with smaller differences across applications. Overall, our results quantify the extent to which our choices of online systems confine us inside “social bubbles.”

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1002/asi.24121

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:70:y:2019:i:3:p:218-229

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635

Access Statistics for this article

More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jinfst:v:70:y:2019:i:3:p:218-229