EconPapers    
Economics at your fingertips  
 

Bag of textual graphs (BoTG): A general graph‐based text representation model

Ícaro Cavalcante Dourado, Renata Galante, Marcos André Gonçalves and Ricardo da Silva Torres

Journal of the Association for Information Science & Technology, 2019, vol. 70, issue 8, 817-829

Abstract: Text representation models are the fundamental basis for information retrieval and text mining tasks. Although different text models have been proposed, they typically target specific task aspects in isolation, such as time efficiency, accuracy, or applicability for different scenarios. Here we present Bag of Textual Graphs (BoTG), a general text representation model that addresses these three requirements at the same time. The proposed textual representation is based on a graph‐based scheme that encodes term proximity and term ordering, and represents text documents into an efficient vector space that addresses all these aspects as well as provides discriminative textual patterns. Extensive experiments are conducted in two experimental scenarios—classification and retrieval—considering multiple well‐known text collections. We also compare our model against several methods from the literature. Experimental results demonstrate that our model is generic enough to handle different tasks and collections. It is also more efficient than the widely used state‐of‐the‐art methods in textual classification and retrieval tasks, with a competitive effectiveness, sometimes with gains by large margins.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/asi.24167

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:70:y:2019:i:8:p:817-829

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635

Access Statistics for this article

More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jinfst:v:70:y:2019:i:8:p:817-829