EconPapers    
Economics at your fingertips  
 

Understanding the uncertainty of disaster tweets and its effect on retweeting: The perspectives of uncertainty reduction theory and information entropy

Jaebong Son, Jintae Lee, Kai R. Larsen and Jiyoung Woo

Journal of the Association for Information Science & Technology, 2020, vol. 71, issue 10, 1145-1161

Abstract: The rapid and wide dissemination of up‐to‐date, localized information is a central issue during disasters. Being attributed to the original 140‐character length, Twitter provides its users with quick‐posting and easy‐forwarding features that facilitate the timely dissemination of warnings and alerts. However, a concern arises with respect to the terseness of tweets that restricts the amount of information conveyed in a tweet and thus increases a tweetʼs uncertainty. We tackle such concerns by proposing entropy as a measure for a tweetʼs uncertainty. Based on the perspectives of Uncertainty Reduction Theory (URT), we theorize that the more uncertain information of a disaster tweet, the higher the entropy, which will lead to a lower retweet count. By leveraging the statistical and predictive analyses, we provide evidence supporting that entropy validly and reliably assesses the uncertainty of a tweet. This study contributes to improving our understanding of information propagation on Twitter during disasters. Academically, we offer a new variable of entropy to measure a tweetʼs uncertainty, an important factor influencing disaster tweetsʼ retweeting. Entropy plays a critical role to better comprehend URLs and emoticons as a means to convey information. Practically, this research suggests a set of guidelines for effectively crafting disaster messages on Twitter.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1002/asi.24329

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:71:y:2020:i:10:p:1145-1161

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635

Access Statistics for this article

More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jinfst:v:71:y:2020:i:10:p:1145-1161