EconPapers    
Economics at your fingertips  
 

Unified deep neural network for segmentation and labeling of multipanel biomedical figures

Jie Zou, George Thoma and Sameer Antani

Journal of the Association for Information Science & Technology, 2020, vol. 71, issue 11, 1327-1340

Abstract: Recent efforts in biomedical visual question answering (VQA) research rely on combined information gathered from the image content and surrounding text supporting the figure. Biomedical journals are a rich source of information for such multimodal content indexing. For multipanel figures in these journals, it is critical to develop automatic figure panel splitting and label recognition algorithms to associate individual panels with text metadata in the figure caption and the body of the article. Challenges in this task include large variations in figure panel layout, label location, size, contrast to background, and so on. In this work, we propose a deep convolutional neural network, which splits the panels and recognizes the panel labels in a single step. Visual features are extracted from several layers at various depths of the backbone neural network and organized to form a feature pyramid. These features are fed into classification and regression networks to generate candidates of panels and their labels. These candidates are merged to create the final panel segmentation result through a beam search algorithm. We evaluated the proposed algorithm on the ImageCLEF data set and achieved better performance than the results reported in the literature. In order to thoroughly investigate the proposed algorithm, we also collected and annotated our own data set of 10,642 figures. The experiments, trained on 9,642 figures and evaluated on the remaining 1,000 figures, show that combining panel splitting and panel label recognition mutually benefit each other.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asi.24334

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:71:y:2020:i:11:p:1327-1340

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635

Access Statistics for this article

More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jinfst:v:71:y:2020:i:11:p:1327-1340