Combining and learning word embedding with WordNet for semantic relatedness and similarity measurement
Yang‐Yin Lee,
Hao Ke,
Ting‐Yu Yen,
Hen‐Hsen Huang and
Hsin‐Hsi Chen
Journal of the Association for Information Science & Technology, 2020, vol. 71, issue 6, 657-670
Abstract:
In this research, we propose 3 different approaches to measure the semantic relatedness between 2 words: (i) boost the performance of GloVe word embedding model via removing or transforming abnormal dimensions; (ii) linearly combine the information extracted from WordNet and word embeddings; and (iii) utilize word embedding and 12 linguistic information extracted from WordNet as features for Support Vector Regression. We conducted our experiments on 8 benchmark data sets, and computed Spearman correlations between the outputs of our methods and the ground truth. We report our results together with 3 state‐of‐the‐art approaches. The experimental results show that our method can outperform state‐of‐the‐art approaches in all the selected English benchmark data sets.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/asi.24289
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:71:y:2020:i:6:p:657-670
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().