Detecting fake news stories via multimodal analysis
Vivek K. Singh,
Isha Ghosh and
Darshan Sonagara
Journal of the Association for Information Science & Technology, 2021, vol. 72, issue 1, 3-17
Abstract:
Filtering, vetting, and verifying digital information is an area of core interest in information science. Online fake news is a specific type of digital misinformation that poses serious threats to democratic institutions, misguides the public, and can lead to radicalization and violence. Hence, fake news detection is an important problem for information science research. While there have been multiple attempts to identify fake news, most of such efforts have focused on a single modality (e.g., only text‐based or only visual features). However, news articles are increasingly framed as multimodal news stories, and hence, in this work, we propose a multimodal approach combining text and visual analysis of online news stories to automatically detect fake news. Drawing on key theories of information processing and presentation, we identify multiple text and visual features that are associated with fake or credible news articles. We then perform a predictive analysis to detect features most strongly associated with fake news. Next, we combine these features in predictive models using multiple machine‐learning techniques. The experimental results indicate that a multimodal approach outperforms single‐modality approaches, allowing for better fake news detection.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1002/asi.24359
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:72:y:2021:i:1:p:3-17
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().