EconPapers    
Economics at your fingertips  
 

Hierarchical attention model for personalized tag recommendation

Jianshan Sun, Mingyue Zhu, Yuanchun Jiang, Yezheng Liu and Le Wu

Journal of the Association for Information Science & Technology, 2021, vol. 72, issue 2, 173-189

Abstract: With the development of Web‐based social networks, many personalized tag recommendation approaches based on multi‐information have been proposed. Due to the differences in users' preferences, different users care about different kinds of information. In the meantime, different elements within each kind of information are differentially informative for user tagging behaviors. In this context, how to effectively integrate different elements and different information separately becomes a key part of tag recommendation. However, the existing methods ignore this key part. In order to address this problem, we propose a deep neural network for tag recommendation. Specifically, we model two important attentive aspects with a hierarchical attention model. For different user‐item pairs, the bottom layered attention network models the influence of different elements on the features representation of the information while the top layered attention network models the attentive scores of different information. To verify the effectiveness of the proposed method, we conduct extensive experiments on two real‐world data sets. The results show that using attention network and different kinds of information can significantly improve the performance of the recommendation model, and verify the effectiveness and superiority of our proposed model.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1002/asi.24400

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:72:y:2021:i:2:p:173-189

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635

Access Statistics for this article

More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jinfst:v:72:y:2021:i:2:p:173-189