Enhancing keyphrase extraction from microblogs using human reading time
Yingyi Zhang and
Chengzhi Zhang
Journal of the Association for Information Science & Technology, 2021, vol. 72, issue 5, 611-626
Abstract:
The premise of manual keyphrase annotation is to read the corresponding content of an annotated object. Intuitively, when we read, more important words will occupy a longer reading time. Hence, by leveraging human reading time, we can find the salient words in the corresponding content. However, previous studies on keyphrase extraction ignore human reading features. In this article, we aim to leverage human reading time to extract keyphrases from microblog posts. There are two main tasks in this study. One is to determine how to measure the time spent by a human on reading a word. We use eye fixation durations (FDs) extracted from an open source eye‐tracking corpus. Moreover, we propose strategies to make eye FD more effective on keyphrase extraction. The other task is to determine how to integrate human reading time into keyphrase extraction models. We propose two novel neural network models. The first is a model in which the human reading time is used as the ground truth of the attention mechanism. In the second model, we use human reading time as the external feature. Quantitative and qualitative experiments show that our proposed models yield better performance than the baseline models on two microblog datasets.
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/asi.24430
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:72:y:2021:i:5:p:611-626
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().