An iSchool approach to data science: Human‐centered, socially responsible, and context‐driven
Chirag Shah,
Theresa Anderson,
Loni Hagen and
Yin Zhang
Journal of the Association for Information Science & Technology, 2021, vol. 72, issue 6, 793-796
Abstract:
The Information Schools, also referred to as iSchools, have a unique approach to data science with three distinct components: human‐centeredness, socially responsible, and rooted in context. In this position paper, we highlight and expand on these components and show how they are integrated in various research and educational activities related to data science that are being carried out at iSchools. We argue that the iSchool way of doing data science is not only highly relevant to the current times, but also crucial in solving problems of tomorrow. Specifically, we accentuate the issues of developing insights and solutions that are not only data‐driven, but also incorporate human values, including transparency, privacy, ethics, fairness, and equity. This approach to data science has meaningful implications on how we educate the students and train the next generation of scholars and policymakers. Here, we provide some of those design decisions, rooted in evidence‐based research, along with our perspective on how data science is currently situated and how it should be advanced in iSchools.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.24444
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:72:y:2021:i:6:p:793-796
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().