Facing the volatility of tweets in altmetric research
Zhichao Fang,
Jonathan Dudek and
Rodrigo Costas
Journal of the Association for Information Science & Technology, 2022, vol. 73, issue 8, 1192-1195
Abstract:
The data re‐collection for tweets from data snapshots is a common methodological step in Twitter‐based research. Understanding better the volatility of tweets over time is important for validating the reliability of metrics based on Twitter data. We tracked a set of 37,918 original scholarly tweets mentioning COVID‐19‐related research daily for 56 days and captured the reasons for the changes in their availability over time. Results show that the proportion of unavailable tweets increased from 1.6 to 2.6% in the time window observed. Of the 1,323 tweets that became unavailable at some point in the period observed, 30.5% became available again afterwards. “Revived” tweets resulted mainly from the unprotecting, reactivating, or unsuspending of users' accounts. Our findings highlight the importance of noting this dynamic nature of Twitter data in altmetric research and testify to the challenges that this poses for the retrieval, processing, and interpretation of Twitter data about scientific papers.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/asi.24624
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:73:y:2022:i:8:p:1192-1195
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().