SEntFiN 1.0: Entity‐aware sentiment analysis for financial news
Ankur Sinha,
Satishwar Kedas,
Rishu Kumar and
Pekka Malo
Journal of the Association for Information Science & Technology, 2022, vol. 73, issue 9, 1314-1335
Abstract:
Fine‐grained financial sentiment analysis on news headlines is a challenging task requiring human‐annotated datasets to achieve high performance. Limited studies have tried to address the sentiment extraction task in a setting where multiple entities are present in a news headline. In an effort to further research in this area, we make publicly available SEntFiN 1.0, a human‐annotated dataset of 10,753 news headlines with entity‐sentiment annotations, of which 2,847 headlines contain multiple entities, often with conflicting sentiments. We augment our dataset with a database of over 1,000 financial entities and their various representations in news media amounting to over 5,000 phrases. We propose a framework that enables the extraction of entity‐relevant sentiments using a feature‐based approach rather than an expression‐based approach. For sentiment extraction, we utilize 12 different learning schemes utilizing lexicon‐based and pretrained sentence representations and five classification approaches. Our experiments indicate that lexicon‐based N‐gram ensembles are above par with pretrained word embedding schemes such as GloVe. Overall, RoBERTa and finBERT (domain‐specific BERT) achieve the highest average accuracy of 94.29% and F1‐score of 93.27%. Further, using over 210,000 entity‐sentiment predictions, we validate the economic effect of sentiments on aggregate market movements over a long duration.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.24634
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:73:y:2022:i:9:p:1314-1335
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().