Subgroup formation in human–robot teams: A multi‐study mixed‐method approach with implications for theory and practice
Sangseok You and
Lionel P. Robert
Journal of the Association for Information Science & Technology, 2023, vol. 74, issue 3, 323-338
Abstract:
Human–robot teams represent a challenging work application of artificial intelligence (AI). Building strong emotional bonds with robots is one solution to promoting teamwork in such teams, but does this come at a cost in the form of subgroups? Subgroups—smaller divisions within teams—in all human teams can undermine teamwork. Despite the importance of this question, it has received little attention. We employed a mixed‐methods approach by conducting a lab experiment and a qualitative online survey. We (a) examined the formation and impact of subgroups in human–robot teams and (b) obtained insights from workers currently adapting to robots in the workplace on mitigating impacts of subgroups. The experimental study (Study 1) with 44 human–robot teams found that robot identification (RID) and team identification (TID) are associated with increases and decreases in the likelihood of a subgroup formation, respectively. RID and TID moderated the impacts of subgroups on teamwork quality and subsequent performance in human–robot teams. Study 2 was a qualitative study with 112 managers and employees who worked collaboratively with robots. We derived practical insights from this study that help situate and translate what was learned in Study 1 into actual work practices.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asi.24626
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:74:y:2023:i:3:p:323-338
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().