Stepping beyond your comfort zone: Diffusion‐based network analytics for knowledge trajectory recommendation
Yi Zhang,
Mengjia Wu,
Guangquan Zhang and
Jie Lu
Journal of the Association for Information Science & Technology, 2023, vol. 74, issue 7, 775-790
Abstract:
Predicting a researcher's knowledge trajectories beyond their current foci can leverage potential inter‐/cross‐/multi‐disciplinary interactions to achieve exploratory innovation. In this study, we present a method of diffusion‐based network analytics for knowledge trajectory recommendation. The method begins by constructing a heterogeneous bibliometric network consisting of a co‐topic layer and a co‐authorship layer. A novel link prediction approach with a diffusion strategy is then used to capture the interactions between social elements (e.g., collaboration) and knowledge elements (e.g., technological similarity) in the process of exploratory innovation. This diffusion strategy differentiates the interactions occurring among homogeneous and heterogeneous nodes in the heterogeneous bibliometric network and weights the strengths of these interactions. Two sets of experiments—one with a local dataset and the other with a global dataset—demonstrate that the proposed method is prior to 10 selected baselines in link prediction, recommender systems, and upstream graph representation learning. A case study recommending knowledge trajectories of information scientists with topical hierarchy and explainable mediators reveals the proposed method's reliability and potential practical uses in broad scenarios.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.24754
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:74:y:2023:i:7:p:775-790
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().