An automatic data quality approach to assess semantic data from cultural heritage institutions
Gustavo Candela
Journal of the Association for Information Science & Technology, 2023, vol. 74, issue 7, 866-878
Abstract:
In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.24761
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:74:y:2023:i:7:p:866-878
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().