EconPapers    
Economics at your fingertips  
 

A new method for protecting interrelated time series with Bayesian prior distributions and synthetic data

Matthew J. Schneider and John Abowd ()

Journal of the Royal Statistical Society Series A, 2015, vol. 178, issue 4, 963-975

Abstract: type="main" xml:id="rssa12100-abs-0001">

Organizations disseminate statistical summaries of administrative data via the Web for unrestricted public use. They balance the trade-off between protection of confidentiality and quality of inference. Recent developments in disclosure avoidance techniques include the incorporation of synthetic data, which capture the essential features of underlying data by releasing altered data generated from a posterior predictive distribution. The US Census Bureau collects millions of interrelated time series microdata that are hierarchical and contain many 0s and suppressions. Rule-based disclosure avoidance techniques often require the suppression of count data for small magnitudes and the modification of data based on a small number of entities. Motivated by this problem, we use zero-inflated extensions of Bayesian generalized linear mixed models with privacy-preserving prior distributions to develop methods for protecting and releasing synthetic data from time series about thousands of small groups of entities without suppression based on the magnitudes or number of entities. We find that, as the prior distributions of the variance components in the Bayesian generalized linear mixed model become more precise towards zero, protection of confidentiality increases and the quality of inference deteriorates. We evaluate our methodology by using a strict privacy measure, empirical differential privacy and a newly defined risk measure, the probability of range identification, which directly measures attribute disclosure risk. We illustrate our results with the US Census Bureau's quarterly workforce indicators.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssa.2015.178.issue-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:178:y:2015:i:4:p:963-975

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:jorssa:v:178:y:2015:i:4:p:963-975