Economics at your fingertips  

Stable coalition structures and power indices for majority voting

Takaaki Abe

Journal of Public Economic Theory, 2022, vol. 24, issue 6, 1413-1432

Abstract: An (n,k)‐game is a voting game in which each player has exactly one vote, and decisions are made by at least k affirmative votes of the n players. A power index shows the a priori power of the n voters. The purpose of this paper is to show what axioms of power indices generate stable coalition structures for each (n,k)‐game. Using the stability notion of the core, we show that a coalition structure containing a minimal winning coalition is stable for a wide range of general power indices satisfying a set of axioms, such as the Shapley–Shubik, Banzhaf, normalized Banzhaf, and Deegan–Packel power indices. Moreover, we also show that a coalition structure that represents a two‐party system can be stable if the two large parties are close enough in size. Some unstable coalition structures are also analyzed.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1097-3923

Access Statistics for this article

Journal of Public Economic Theory is currently edited by Rabah Amir, Gareth Myles and Myrna Wooders

More articles in Journal of Public Economic Theory from Association for Public Economic Theory Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

Page updated 2023-08-05
Handle: RePEc:bla:jpbect:v:24:y:2022:i:6:p:1413-1432