EconPapers    
Economics at your fingertips  
 

The Inverse Kullback–Leibler Method for Fitting Vector Moving Averages

Tucker McElroy () and Anindya Roy

Journal of Time Series Analysis, 2018, vol. 39, issue 2, 172-191

Abstract: A new method for the estimation of a vector moving average (VMA) process is presented. The technique uses Kullback–Leibler discrepancy with inverse spectra, and yields a Yule–Walker system of equations in inverse autocovariances for the VMA coefficients. This provides a direct formula for the coefficients, which always results in a stable matrix polynomial. The paper provides asymptotic results, as well as an analysis of the method's performance, in terms of speed, bias, and precision. Applications to preliminary estimation of VMA models are discussed, and the method is illustrated on retail data.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/jtsa.12276

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:39:y:2018:i:2:p:172-191

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:39:y:2018:i:2:p:172-191