Improved estimation of dynamic models of conditional means and variances
Weining Wang,
Jeffrey M. Wooldridge and
Mengshan Xu
Journal of Time Series Analysis, 2025, vol. 46, issue 3, 458-490
Abstract:
Using ‘working’ assumptions on conditional third and fourth moments of errors, we propose a method of moments estimator that can have improved efficiency over the popular Gaussian quasi‐maximum likelihood estimator (GQMLE). Higher‐order moment assumptions are not needed for consistency – we only require the first two conditional moments to be correctly specified – but the optimal instruments are derived under these assumptions. The working assumptions allow both asymmetry in the distribution of the standardized errors as well as fourth moments that can be smaller or larger than that of the Gaussian distribution. The approach is related to the generalized estimation equations (GEE) approach – which seeks the improvement of estimators of the conditional mean parameters by making working assumptions on the conditional second moments. We derive the asymptotic distribution of the new estimator and show that it does not depend on the estimators of the third and fourth moments. A simulation study shows that the efficiency gains over the GQMLE can be non‐trivial.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12770
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:46:y:2025:i:3:p:458-490
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().