Improved Estimation of Dynamic Models of Conditional Means and Variances
Weining Wang,
Jeffrey Wooldridge and
Mengshan Xu
No 2020-021, IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Abstract:
Modelling dynamic conditional heteroscedasticity is the daily routine in time series econometrics. We propose a weighted conditional moment estimation to potentially improve the eciency of the QMLE (quasi maximum likelihood estimation). The weights of conditional moments are selected based on the analytical form of optimal instruments, and we nominally decide the optimal instrument based on the third and fourth moments of the underlying error term. This approach is motivated by the idea of general estimation equations (GEE). We also provide an analysis of the eciency of QMLE for the location and variance parameters. Simulations and applications are conducted to show the better performance of our estimators.
JEL-codes: C00 (search for similar items in EconPapers)
Date: 2020
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-ore and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/230827/1/irtg1792dp2020-021.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:irtgdp:2020021
Access Statistics for this paper
More papers in IRTG 1792 Discussion Papers from Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().