TWO‐STEP EMPIRICAL LIKELIHOOD ESTIMATION UNDER STRATIFIED SAMPLING WHEN AGGREGATE INFORMATION IS AVAILABLE*
Esmeralda Ramalho () and
Joaquim Ramalho ()
Manchester School, 2006, vol. 74, issue 5, 577-592
Abstract:
Empirical likelihood is appropriate to estimate moment condition models when a random sample from the target population is available. However, many economic surveys are subject to some form of stratification, in which case direct application of empirical likelihood will produce inconsistent estimators. In this paper we propose a two‐step empirical likelihood estimator to deal with stratified samples in models defined by unconditional moment restrictions in the presence of some aggregate information such as the mean and the variance of the variable of interest. A Monte Carlo simulation study reveals promising results for many versions of the two‐step empirical likelihood estimator.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9957.2006.00510.x
Related works:
Working Paper: Two-step Empirical Likelihood Estimation under Stratified Sampling when Aggregate Information is Available (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:manchs:v:74:y:2006:i:5:p:577-592
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1463-6786
Access Statistics for this article
Manchester School is currently edited by Keith Blackburn
More articles in Manchester School from University of Manchester Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().