EconPapers    
Economics at your fingertips  
 

Local volatility under rough volatility

Florian Bourgey, Stefano De Marco, Peter K. Friz and Paolo Pigato

Mathematical Finance, 2023, vol. 33, issue 4, 1119-1145

Abstract: Several asymptotic results for the implied volatility generated by a rough volatility model have been obtained in recent years (notably in the small‐maturity regime), providing a better understanding of the shapes of the volatility surface induced by rough volatility models, supporting their calibration power to SP500 option data. Rough volatility models also generate a local volatility surface, via the so‐called Markovian projection of the stochastic volatility. We complement the existing results on implied volatility by studying the asymptotic behavior of the local volatility surface generated by a class of rough stochastic volatility models, encompassing the rough Bergomi model. Notably, we observe that the celebrated “1/2 skew rule” linking the short‐term at‐the‐money skew of the implied volatility to the short‐term at‐the‐money skew of the local volatility, a consequence of the celebrated “harmonic mean formula” of [Berestycki et al. (2002). Quantitative Finance, 2, 61–69], is replaced by a new rule: the ratio of the at‐the‐money implied and local volatility skews tends to the constant 1/(H+3/2)$1/(H + 3/2)$ (as opposed to the constant 1/2), where H is the regularity index of the underlying instantaneous volatility process.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/mafi.12392

Related works:
Working Paper: Local volatility under rough volatility (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:33:y:2023:i:4:p:1119-1145

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:mathfi:v:33:y:2023:i:4:p:1119-1145