Local volatility under rough volatility
Florian Bourgey,
Stefano De Marco,
Peter K. Friz and
Paolo Pigato
Papers from arXiv.org
Abstract:
Several asymptotic results for the implied volatility generated by a rough volatility model have been obtained in recent years (notably in the small-maturity regime), providing a better understanding of the shapes of the volatility surface induced by rough volatility models, and supporting their calibration power to S&P500 option data. Rough volatility models also generate a local volatility surface, via the so-called Markovian projection of the stochastic volatility. We complement the existing results on the implied volatility by studying the asymptotic behavior of the local volatility surface generated by a class of rough stochastic volatility models, encompassing the rough Bergomi model. Notably, we observe that the celebrated "1/2 skew rule" linking the short-term at-the-money skew of the implied volatility to the short-term at-the-money skew of the local volatility, a consequence of the celebrated "harmonic mean formula" of [Berestycki, Busca, and Florent, QF 2002], is replaced by a new rule: the ratio of the at-the-money implied and local volatility skews tends to the constant 1/(H + 3/2) (as opposed to the constant 1/2), where H is the regularity index of the underlying instantaneous volatility process.
Date: 2022-04, Revised 2022-11
New Economics Papers: this item is included in nep-ets, nep-ore and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2204.02376 Latest version (application/pdf)
Related works:
Journal Article: Local volatility under rough volatility (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.02376
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().