The two‐dimensional stationary Navier–Stokes equations in toroidal Besov spaces
Hiroyuki Tsurumi
Mathematische Nachrichten, 2023, vol. 296, issue 4, 1651-1668
Abstract:
We consider the stationary Navier–Stokes equations in the two‐dimensional torus T2$\mathbb {T}^2$. For any ε>0$\varepsilon >0$, we show the existence, uniqueness, and continuous dependence of solutions in homogeneous toroidal Besov spaces Ḃp+ε,q−1+2p(T2)$\dot{B}^{-1+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}^2)$ for given small external forces in Ḃp+ε,q−3+2p(T2)$\dot{B}^{-3+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}^2)$ when 1≤p
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000208
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:4:p:1651-1668
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().