On the Lindelöf hypothesis for the Riemann zeta function and Piltz divisor problem
Lahoucine Elaissaoui
Mathematische Nachrichten, 2025, vol. 298, issue 12, 3960-3973
Abstract:
In order to well understand the behavior of the Riemann zeta function inside the critical strip, we show, among other things, the Fourier expansion of the ζk(s)$\zeta ^k(s)$ (k∈N$k \in \mathbb {N}$) in the half‐plane ℜs>1/2$\Re s > 1/2$ and we deduce a necessary and sufficient condition for the truth of the Lindelöf hypothesis. Moreover, if Δk$\Delta _k$ denotes the error term in the Piltz divisor problem then for almost all x≥1$x\ge 1$ and any given k∈N$k \in \mathbb {N}$ we have Δk(x)=limρ→1−∑n=0+∞(−1)nℓn,kLnlog(x)ρn$$\begin{equation*} \hspace*{86pt}\Delta _k(x) = \lim _{\rho \rightarrow 1^-}\sum _{n=0}^{+\infty }(-1)^n\ell _{n,k}L_n{\left(\log (x)\right)}\rho ^n \end{equation*}$$where (ℓn,k)n$(\ell _{n,k})_{n}$ and Ln$L_n$ denote, respectively, the Fourier coefficients of ζk(s)$\zeta ^k(s)$ and Laguerre polynomials.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70081
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3960-3973
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().