An Introduction to Best Empirical Models when the Parameter Space is Infinite Dimensional*
Werner Ploberger and
Peter Phillips
Oxford Bulletin of Economics and Statistics, 2003, vol. 65, issue s1, 877-890
Abstract:
Ploberger and Phillips (Econometrica, Vol. 71, pp. 627–673, 2003) proved a result that provides a bound on how close a fitted empirical model can get to the true model when the model is represented by a parameterized probability measure on a finite dimensional parameter space. The present note extends that result to cases where the parameter space is infinite dimensional. The results have implications for model choice in infinite dimensional problems and highlight some of the difficulties, including technical difficulties, presented by models of infinite dimension. Some implications for forecasting are considered and some applications are given, including the empirically relevant case of vector autoregression (VAR) models of infinite order.
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1046/j.0305-9049.2003.00089.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:obuest:v:65:y:2003:i:s1:p:877-890
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0305-9049
Access Statistics for this article
Oxford Bulletin of Economics and Statistics is currently edited by Christopher Adam, Anindya Banerjee, Christopher Bowdler, David Hendry, Adriaan Kalwij, John Knight and Jonathan Temple
More articles in Oxford Bulletin of Economics and Statistics from Department of Economics, University of Oxford Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().