Practical Problems with Reduced‐rank ML Estimators for Cointegration Parameters and a Simple Alternative
Ralf Brüggemann and
Helmut Lütkepohl
Oxford Bulletin of Economics and Statistics, 2005, vol. 67, issue 5, 673-690
Abstract:
Johansen's reduced‐rank maximum likelihood (ML) estimator for cointegration parameters in vector error correction models is known to produce occasional extreme outliers. Using a small monetary system and German data we illustrate the practical importance of this problem. We also consider an alternative generalized least squares (GLS) system estimator which has better properties in this respect. The two estimators are compared in a small simulation study. It is found that the GLS estimator can indeed be an attractive alternative to ML estimation of cointegration parameters.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1111/j.1468-0084.2005.00136.x
Related works:
Working Paper: Practical Problems with Reduced Rank ML Estimators for Cointegration Parameters and a Simple Alternative (2004) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:obuest:v:67:y:2005:i:5:p:673-690
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0305-9049
Access Statistics for this article
Oxford Bulletin of Economics and Statistics is currently edited by Christopher Adam, Anindya Banerjee, Christopher Bowdler, David Hendry, Adriaan Kalwij, John Knight and Jonathan Temple
More articles in Oxford Bulletin of Economics and Statistics from Department of Economics, University of Oxford Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().