Economics at your fingertips  

Revisiting Error‐Autocorrelation Correction: Common Factor Restrictions and Granger Non‐Causality*

Anya McGuirk and Aris Spanos ()

Oxford Bulletin of Economics and Statistics, 2009, vol. 71, issue 2, 273-294

Abstract: The paper questions the appropriateness of the practice known as ‘error‐autocorrelation correcting’ in linear regression, by showing that adopting an AR(1) error formulation is equivalent to assuming that the regressand does not Granger cause any of the regressors. This result is used to construct a new test for the common factor restrictions, as well as investigate – using Monte Carlo simulations – other potential sources of unreliability of inference resulting from this practice. The main conclusion is that when the Granger cause restriction is false, the ordinary least square and generalized least square estimators are biased and inconsistent, and using autocorrelation‐consistent standard errors does not improve the reliability of inference.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0305-9049

Access Statistics for this article

Oxford Bulletin of Economics and Statistics is currently edited by Christopher Adam, Anindya Banerjee, Christopher Bowdler, David Hendry, Adriaan Kalwij, John Knight and Jonathan Temple

More articles in Oxford Bulletin of Economics and Statistics from Department of Economics, University of Oxford Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

Page updated 2021-01-04
Handle: RePEc:bla:obuest:v:71:y:2009:i:2:p:273-294