A Better Understanding of Granger Causality Analysis: A Big Data Environment
Xiaojun Song and
Abderrahim Taamouti
Oxford Bulletin of Economics and Statistics, 2019, vol. 81, issue 4, 911-936
Abstract:
This paper aims to provide a better understanding of the causal structure in a multivariate time series by introducing several statistical procedures for testing indirect and spurious causal effects. In practice, detecting these effects is a complicated task, since the auxiliary variables that transmit/induce indirect/spurious causality are very often unknown. The availability of hundreds of economic variables makes this task even more difficult since it is generally infeasible to find the appropriate auxiliary variables among all the available ones. In addition, including hundreds of variables and their lags in a regression equation is technically difficult. The paper proposes several statistical procedures to test for the presence of indirect/spurious causality based on big data analysis. Furthermore, it suggests an identification procedure to find the variables that transmit/induce the indirect/spurious causality. Finally, it provides an empirical application where 135 economic variables were used to study a possible indirect causality from money/credit to income.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/obes.12288
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:obuest:v:81:y:2019:i:4:p:911-936
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0305-9049
Access Statistics for this article
Oxford Bulletin of Economics and Statistics is currently edited by Christopher Adam, Anindya Banerjee, Christopher Bowdler, David Hendry, Adriaan Kalwij, John Knight and Jonathan Temple
More articles in Oxford Bulletin of Economics and Statistics from Department of Economics, University of Oxford Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().