Bias of OLS Estimators due to Exclusion of Relevant Variables and Inclusion of Irrelevant Variables
Deepankar Basu
Oxford Bulletin of Economics and Statistics, 2020, vol. 82, issue 1, 209-234
Abstract:
In this paper, I discuss three issues related to bias of OLS estimators in a general multivariate setting. First, I discuss the bias that arises from omitting relevant variables. I offer a geometric interpretation of such bias and derive sufficient conditions in terms of sign restrictions that allows us to determine the direction of bias. Second, I show that inclusion of some omitted variables will not necessarily reduce the magnitude of bias as long as some others remain omitted. Third, I show that inclusion of irrelevant variables in a model with omitted variables can also have an impact on the bias of OLS estimators. I use a running example of a simple wage regression to illustrate my arguments.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1111/obes.12322
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:obuest:v:82:y:2020:i:1:p:209-234
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0305-9049
Access Statistics for this article
Oxford Bulletin of Economics and Statistics is currently edited by Christopher Adam, Anindya Banerjee, Christopher Bowdler, David Hendry, Adriaan Kalwij, John Knight and Jonathan Temple
More articles in Oxford Bulletin of Economics and Statistics from Department of Economics, University of Oxford Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().