A Simple Estimator of Two‐Dimensional Copulas, with Applications
Eddie Anderson,
Artem Prokhorov and
Yajing Zhu
Oxford Bulletin of Economics and Statistics, 2020, vol. 82, issue 6, 1375-1412
Abstract:
Copulas are distributions with uniform marginals. Non‐parametric copula estimates may violate the uniformity condition in finite samples. We look at whether it is possible to obtain valid piecewise linear copula densities by triangulation. The copula property imposes strict constraints on design points, making an equi‐spaced grid a natural starting point. However, the mixed‐integer nature of the problem makes a pure triangulation approach impractical on fine grids. As an alternative, we study the ways of approximating copula densities with triangular functions which guarantees that the estimator is a valid copula density. The family of resulting estimators can be viewed as a non‐parametric MLE of B‐spline coefficients on possibly non‐equally spaced grids under simple linear constraints. As such, it can be easily solved using standard convex optimization tools and allows for a degree of localization. A simulation study shows an attractive performance of the estimator in small samples and compares it with some of the leading alternatives. We demonstrate empirical relevance of our approach using three applications. In the first application, we investigate how the body mass index of children depends on that of parents. In the second application, we construct a bivariate copula underlying the Gibson paradox from macroeconomics. In the third application, we show the benefit of using our approach in testing the null of independence against the alternative of an arbitrary dependence pattern.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/obes.12371
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:obuest:v:82:y:2020:i:6:p:1375-1412
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0305-9049
Access Statistics for this article
Oxford Bulletin of Economics and Statistics is currently edited by Christopher Adam, Anindya Banerjee, Christopher Bowdler, David Hendry, Adriaan Kalwij, John Knight and Jonathan Temple
More articles in Oxford Bulletin of Economics and Statistics from Department of Economics, University of Oxford Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().